Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Igor V. Zatovsky, ${ }^{\text {a* }}$ Nataliya Yu. Strutynska, ${ }^{\text {a }}$ Vyacheslav N. Baumer, ${ }^{\text {b }}$ Nikolay S. Slobodyanik ${ }^{\text {a }}$ and Oleg V. Shishkin ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska Street, 01033 Kyiv, Ukraine, and ${ }^{\mathbf{b}}$ STC Institute for Single Crystals, National Academy of Science of Ukraine, 60 Lenin Avenue, 61001 Kharkiv, Ukraine

Correspondence e-mail: zvigo@yandex.ru

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{O})=0.002 \AA$
R factor $=0.020$
$w R$ factor $=0.041$
Data-to-parameter ratio $=20.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Caesium calcium cyclo-triphosphate, $\mathrm{CsCaP}_{3} \mathrm{O}_{9}$

Crystals of the title compound, $\mathrm{CsCd}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)$, were grown from a melt. The structure is isotypic with $\mathrm{CsCdP}_{3} \mathrm{O}_{9}$. The threedimensional framework is built up from $\left[\mathrm{CaO}_{6}\right]$ octahedra linked together via corner-sharing to cyclic $\left[\mathrm{P}_{3} \mathrm{O}_{9}\right]^{3-}$ anions. The Cs cations are situated in large cavities in the $\left[\mathrm{CaP}_{3} \mathrm{O}_{9}\right]_{\infty}^{-}$ anion framework. Except for one P and three O atoms, all other atoms (one Cs , one Ca , one P and three O atoms) are located on mirror planes.

Comment

The condensation of tetrahedral phosphate anions via two common vertices leads to the formation of polyphosphate anions. The two groups of polyphosphates are cyclo-polyphosphates, with the general anion formula $\left[\mathrm{P}_{n} \mathrm{O}_{3 n}\right]^{n-}$, and catena-polyphosphates, $\left[\mathrm{P}_{n} \mathrm{O}_{3 n+1}\right]^{(n+2)-}$. The cyclo-phosphate anion with the smallest ring size is the cyclo-triphosphate anion, viz. $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}$. It has been found in, for example, $\mathrm{K}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ (Bagieu-Beucher et al., 1976), $\mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ (Ondik, 1965), $\mathrm{CsCdP}_{3} \mathrm{O}_{9}$ (Averbuch-Pouchot \& Durif, 1977), $\mathrm{CdK}_{4}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Averbuch-Pouchot, 1978), $\mathrm{BaKP}_{3} \mathrm{O}_{9} \cdot-$ $\mathrm{H}_{2} \mathrm{O}$ (Seethanen \& Durif, 1978) and $\mathrm{NH}_{4} \mathrm{CaP}_{3} \mathrm{O}_{9}$ (Masse et al., 1975). We report here the synthesis and structural characterization of the condensed phosphate $\mathrm{CsCaP}_{3} \mathrm{O}_{9}$, (I), which is isotypic with $\mathrm{CsCdP}_{3} \mathrm{O}_{9}$ (Averbuch-Pouchot \& Durif, 1977).

Figure 1
The crystal structure of (I), in a projection approximately along [010]. The hexagonally shaped tunnels running parallel to [010] are visible.

Received 10 November 2006 Accepted 13 November 2006
(C) 2006 International Union of Crystallography All rights reserved

Figure 2
The cyclo-triphosphate anion in (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $x, \frac{3}{2}-y, z$.]

The structure of (I) contains $\left[\mathrm{CaO}_{6}\right]$ octahedra and $\left[\mathrm{P}_{3} \mathrm{O}_{9}\right]^{3-}$ cyclo-polyphosphate anions linked together via vertices to form a three-dimensional framework structure. In this arrangement, hexagonally shaped tunnels are also present (Fig. 1). The O atoms around Ca form a slightly distorted octahedron. The equatorial $\mathrm{Ca}-\mathrm{O}$ bond lengths are 2.3148 (16) and 2.3443 (15) \AA, whereas the axial bond lengths range from 2.284 (2) to 2.355 (2) A (Table 1).

The $\left[\mathrm{P}_{3} \mathrm{O}_{9}\right]^{3-}$ cyclo-polyphosphate anion is made up of three $\left[\mathrm{PO}_{4}\right]$ tetrahedra (Fig. 2). The lengths of the bridging P O bonds are in the range 1.6072 (9)-1.6196 (16) \AA, and the terminal $\mathrm{P}-\mathrm{O}$ bond lengths are in the range $1.466(2)-$ 1.480 (2) \AA, in good agreement with other cyclo- $\left[\mathrm{P}_{3} \mathrm{O}_{9}\right]^{3-}$ anions.
The Cs ions occupy sites in the large cavities of the $\left[\mathrm{CaP}_{3} \mathrm{O}_{9}\right]_{\infty}^{-}$framework. They show a coordination number of 13, with $\mathrm{Cs}-\mathrm{O}$ distances ranging from 3.1918 (15) to 3.8029 (2) \AA (Table 1, Fig. 3).

Experimental

The title polyphosphate, (I), was prepared by the flux technique in the $\mathrm{Cs}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{CaO}$ melt system. A mixture of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}(2.11 \mathrm{~g})$, $\mathrm{CsPO}_{3}(5.0 \mathrm{~g})$ and $\mathrm{CaHPO}_{4}(0.952 \mathrm{~g})$ was ground in an agate mortar, placed in a porcelain crucible and heated to 973 K for 3 h . The resulting melt was kept at this temperature for 30 min and finally cooled to room temperature. Colourless crystals of (I) were separated from the rest of the glassy matrix by washing with hot deionized water. The purity of (I) was confirmed by the powder XRD (Siemens

A view of the cage where the Cs ion is located.

D500 Ni-filtered $\mathrm{Cu} K \alpha$ radiation). Elemental analysis indicated the presence of Cs, Ca and P in the atomic ratio 1:1:3.

Crystal data

$\mathrm{CsCa}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)$
$Z=4$
$M_{r}=409.9$
Orthorhombic, Pnma
$a=9.8287$ (2) \AA
$b=7.5642$ (1) \AA
$c=12.7905(2) \AA$
$V=950.93(3) \AA^{3}$
$\mathrm{Z}=4$
$D_{x}=2.863 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=4.96 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.05 \times 0.04 \times 0.03 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur-3 CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.790, T_{\text {max }}=0.865$
13085 measured reflections
1482 independent reflections 1278 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=30^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0198 P)^{2}\right. \\
& \quad+0.1458 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.70 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.52 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.041$
$S=1.13$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cs}-\mathrm{O} 3$	$3.1918(15)$	$\mathrm{Ca}-\mathrm{O} 3^{\mathrm{iv}}$	$2.3443(15)$
$\mathrm{Cs}-\mathrm{O}^{\mathrm{i}}$	$3.201(2)$	$\mathrm{Ca}-\mathrm{O} 4$	$2.355(2)$
$\mathrm{Cs}-\mathrm{O} 2^{i i}$	$3.2168(17)$	$\mathrm{P} 1-\mathrm{O} 2$	$1.4729(15)$
$\mathrm{Cs}-\mathrm{O}^{\mathrm{i}}$	$3.2628(16)$	$\mathrm{P} 1-\mathrm{O} 3$	$1.4791(15)$
$\mathrm{Cs}-\mathrm{O}^{\mathrm{i}}$	$3.409(2)$	$\mathrm{P} 1-\mathrm{O} 5$	$1.6072(9)$
$\mathrm{Cs}-\mathrm{O} 5^{\mathrm{ii}}$	$3.448(2)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.6108(15)$
$\mathrm{Cs}-\mathrm{O} 1$	$3.6166(15)$	$\mathrm{P} 2-\mathrm{O} 6$	$1.466(2)$
$\mathrm{Cs}-\mathrm{O} 4$	$3.8029(2)$	$\mathrm{P} 2-\mathrm{O} 4$	$1.480(2)$
$\mathrm{Ca}-\mathrm{O} 6^{\mathrm{iii}}$	$2.284(2)$	$\mathrm{P} 2-\mathrm{O} 1$	$1.6196(16)$
$\mathrm{Ca}-\mathrm{O} 2^{\mathrm{ii}}$	$2.3148(16)$	$\mathrm{P} 2-\mathrm{O} 1^{\mathrm{v}}$	$1.6196(16)$
$\mathrm{O} 5-\mathrm{P} 1-\mathrm{O} 1$	$102.61(9)$	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{P} 2$	$125.47(10)$
$\mathrm{O} 1-\mathrm{P} 2-\mathrm{O} 1^{v}$	$100.81(11)$	$\mathrm{P} 1^{v}-\mathrm{O} 5-\mathrm{P} 1$	$135.84(13)$

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $-x+\frac{3}{2},-y+1, z+\frac{1}{2}$; (iii)
$x+\frac{1}{2}, y,-z+\frac{3}{2}$; (iv) $-x+2, y+\frac{1}{2},-z+1 ;$ (v) $x,-y+\frac{3}{2}, z$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the ICDD, Pennsylvania, for financial support (grant No. 03-02).

References

Averbuch-Pouchot, M. T. (1978). Acta Cryst. B34, 20-22.
Averbuch-Pouchot, M. T. \& Durif, A. (1977). Acta Cryst. B33, 3114-3116.
Bagieu-Beucher, M., Tordjman, I., Durif, A. \& Guitel, J. C. (1976). Acta Cryst. B32, 1427-1430.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brandenburg, K. (1999). DIAMOND. Version 2.0. University of Bonn, Germany.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Masse, R., Durif, A. \& Guitel, J. C. (1975). Z. Kristallogr. 141, 113-125.
Ondik, H. M. (1965). Acta Cryst. 18, 226-232.

inorganic papers

Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. (Versions 1.171.28p4 beta). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Seethanen, D. \& Durif, A. (1978). Acta Cryst. B34, 1091-1093 Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

